Welcome to flora64, a revolutionary database that brings SQL-like simplicity to multimodal data handling. No more complex pipelines - just write familiar operations, and let flora64 handle the scalability and optimization behind the scenes.
flora64 is a versatile database system that turns complex multimodal operations into simple queries:
Built from the ground up to handle diverse data types:
from flora64 import Db, Text, Image
# Create a database instance with automatic pipeline management
db = Db()
# Define a multimodal table - as simple as creating a regular SQL table
posts = db.create_table({
"title": Text,
"content": Text,
"image": Image,
"category": Text
})
# Insert data - flora64 handles all the pipeline complexity
posts.insert([
{
"title": "Mountain Adventure",
"content": "A beautiful sunset over the mountains",
"image": "sunset.jpg",
"category": "nature"
},
{
"title": "City Life",
"content": "Urban architecture at night",
"image": "city.jpg",
"category": "urban"
}
])
# SQL-like operations on multimodal data
results = posts.query({
# GROUP BY with vector aggregations - just like SQL!
"category_vectors": posts.group_by("category").agg({
"avg_embedding": posts["content"].embeddings().mean(),
"image_cluster": posts["image"].embeddings().cluster_center()
}),
# JOIN with vector similarity - as simple as a regular JOIN
"similar_posts": posts.join(
posts,
on=lambda x, y: x["content"].embeddings().cosine_similarity(
y["content"].embeddings()
) > 0.8
),
# WHERE clause with semantic search
"nature_posts": posts.where(
posts["content"].embeddings().similar_to("mountain landscape")
),
# Aggregations across modalities
"cross_modal_score": posts.group_by("category").agg({
"text_image_alignment": (
posts["content"].embeddings()
.cosine_similarity(posts["image"].embeddings())
.mean()
)
})
})
# All the complex pipeline operations are handled automatically:
# - Model loading and optimization
# - Batch processing for efficiency
# - Memory management
# - GPU acceleration when available
# - Caching and indexing
# - Pipeline parallelization
AI/ML Applications
Content Management
Data Processing Pipelines
Ready to start using flora64? Here’s how:
We’re excited to see what you’ll build with flora64!